9.1 Relations and their properties

- Relationships between elements of sets are represented using the structure called a relation
- A subset of Cartesian product of the sets
- Example: a student and his/her ID

Binary relation

- The most direct way to express a relationship between elements of two sets is to use ordered pairs made up of two related elements
- Binary relation: Let A and B be sets. A binary relation from A to B is a subset of A×B
- A binary relation from A to B is a set R of ordered pairs where the 1st element comes from A and the 2nd element comes from B

Binary relation

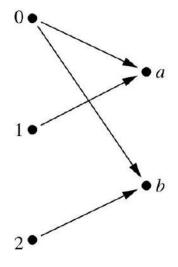
- aRb denotes that (a,b)∈R
- When (a,b) belongs to R, a is said to be related to b by R
- Likewise, **n-ary relations** express relationships among n elements
- Let A_1 , A_2 , ..., A_n be sets. An n-ary relation of these sets is a subset of $A_1 \times A_2 \times ... \times A_n$. The sets A_1 , A_2 , ..., A_n are called the **domains** of the relation, and n is called its **degree**

- Let A be the set of students and B be the set of courses
- Let R be the relation that consists of those pairs (a, b) where a∈A and b∈B
- If Jason is enrolled only in CSE20, and John is enrolled in CSE20 and CSE21
- The pairs (Jason, CSE20), (John, CSE20), (John, CSE 21) belong to R
- But (Jason, CSE21) does not belong to R

- Let A be the set of all cities, and let B be the set of the 50 states in US. Define a relation R by specifying (a,b) belongs to R if city a is in state b
- For instance, (Boulder, Colorado), (Bangor, Maine), (Ann Arbor, Michigan), (Middletown, New Jersey), (Middletown, New York), (Cupertino, California), and (Red Bank, New Jersey) are in R

- Let A={0, 1, 2} and B={a, b}. Then {(0, a), (0, b), (1, a), (2, b)} is a relation from A to B
- That is ORa but not 1Rb

© The McGraw-Hill Companies, Inc. all rights reserved.



R	a	b
0	×	X
1	×	
2		×

Functions as relations

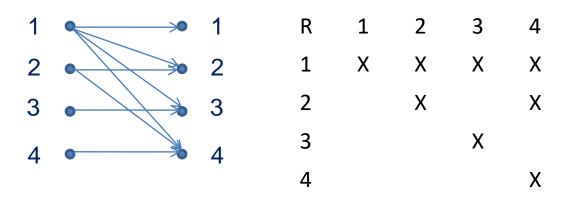
- Recall that a function f from a set A to a set B assigns
 exactly one element of B to each element of A
- The graph of f is the set of ordered pairs (a, b) such that b=f(a)
- Because the graph of f is a subset of A x B, it is a relation from A to B
- Furthermore, the graph of a function has the property that every element of A is the first element of exactly one ordered pair of the graph

Functions as relations

- Conversely, if R is a relation from A to B such that every element in A is the first element of exactly one ordered pair of R, then a function can be defined with R as its graph
- A relation can be used to express one-to-many relationship between the elements of the sets A and B where an element of A may be related to more than one element of B
- A function represents a relation where exactly one element of B is related to each element of A
- Relations are a generalization of functions

Relation on a set

- A relation on the set A is a relation from A to A, i.e., a subset of A x A
- Let A be the set {1, 2, 3, 4}. Which ordered pairs are in the relation R={(a,b)|a divides b}?
- $R=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$



Consider these relations on set of integers

```
\begin{split} R_1 &= \{(a,b) \mid a \leq b\} \\ R_2 &= \{(a,b) \mid a = b \text{ or } a = -b\} \\ R_3 &= \{(a,b) \mid a = b\} \\ R_4 &= \{(a,b) \mid a = b\} \\ R_5 &= \{(a,b) \mid a = b + 1\} \\ R_6 &= \{(a,b) \mid a + b \leq 3\} \end{split} Which of these relations contain each of the pairs (1,1), (1,2), (2,1), (1,-1) and (2,2)?
```

(1,1) is in R₁, R₃, R₄ and R₆; (1,2) is in R₁ and R₆; (2,1) is in R₂, R₅, and R₆; (1,-1) is in R₂, R₃, and R₆; (2,2) is in R₁, R₃, and R₄

- How many relations are there on a set with n elements?
- A relation on a set A is a subset of A x A
- As A x A has n^2 elements, there are 2^{n^2} subsets
- Thus there are 2^{n²} relations on a set with n elements
- That is, there are $2^{3^2} = 2^9 = 512$ relations on the set {a, b, c}

Properties of relations: Reflexive

- In some relations an element is always related to itself
- Let R be the relation on the set of all people consisting of pairs (x,y) where x and y have the same mother and the same father. Then x R x for every person x
- A relation R on a set A is called reflexive if (a,a) ∈ R
 for every element a∈A
- The relation R on the set A is reflexive if $\forall a((a,a) \in R)$

Consider these relations on {1, 2, 3, 4}

```
\begin{split} &R_1 \!\!=\!\! \{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\} \\ &R_2 \!\!=\!\! \{(1,1),(1,2),(2,1)\} \\ &R_3 \!\!=\!\! \{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\} \\ &R_4 \!\!=\!\! \{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\} \\ &R_5 \!\!=\!\! \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\} \\ &R_6 \!\!=\!\! \{(3,4)\} \end{split}
```

Which of these relations are reflexive?

- R₃ and R₅ are reflexive as both contain all pairs of the (a,a)
- Is the "divides" relation on the set of positive integers reflexive?

Symmetric

- In some relations an element is related to a second element <u>if and only if</u> the 2nd element is also related to the 1st element
- A relation R on a set A is called symmetric if (b,a) ∈ R
 whenever (a,b) ∈ R for all a, b ∈ A
- The relation R on the set A is symmetric if $\forall a \ \forall b \ ((a,b) \in R \rightarrow (b,a) \in R)$
- A relation is symmetric if and only if <u>a is related to b</u> implies that <u>b is related to a</u>

Antisymmetric

- A relation R on a set A such that for all a, b ∈ A, if
 (a, b)∈R and (b, a)∈ R, then a=b is called
 antisymmetric
- Similarly, the relation R is antisymmetric if $\forall a \forall b (((a,b) \in R \land (b,a) \in R) \rightarrow (a=b))$
- A relation is antisymmetric if and only if there are no pairs of distinct elements a and b with <u>a related to b</u> and <u>b related to a</u>
- That is, the only way to have <u>a related to b</u> and <u>b</u>
 <u>related to a</u> is for a and b to be <u>the same</u> element

Symmetric and antisymmetric

- The terms symmetric and antisymmetric are not opposites as a relation can have both of these properties or may lack both of them
- A relation cannot be both symmetric and antisymmetric if it contains some pair of the form (a, b) where a ≠ b

Consider these relations on {1, 2, 3, 4}

```
\begin{split} &R_1 \!\!=\!\! \{(1,1),\!(1,2),\!(2,1),\!(2,2),\!(3,4),\!(4,1),\!(4,4)\} \\ &R_2 \!\!=\!\! \{(1,1),\!(1,2),\!(2,1)\} \\ &R_3 \!\!=\!\! \{(1,1),\!(1,2),\!(1,4),\!(2,1),\!(2,2),\!(3,3),\!(4,1),\!(4,4)\} \\ &R_4 \!\!=\!\! \{(2,1),\!(3,1),\!(3,2),\!(4,1),\!(4,2),\!(4,3)\} \\ &R_5 \!\!=\!\! \{(1,1),\!(1,2),\!(1,3),\!(1,4),\!(2,2),\!(2,3),\!(2,4),\!(3,3),\!(3,4),\!(4,4)\} \\ &R_6 \!\!=\!\! \{(3,4)\} \\ &R_7 \!\!=\!\! \{(1,1),\!(2,2),\!(3,3),\!(4,4)\} \end{split}
```

Which of these relations are symmetric or antisymmetric?

- R_2 and R_3 are symmetric: each (a,b) \rightarrow (b,a) in the relation
- R_4 , R_5 , and R_6 are all antisymmetric: no pair of elements a and b with a \neq b s.t. (a, b) and (b, a) are both in the relation

Which are symmetric and antisymmetric

```
R_1=\{(a,b)|a \le b\}

R_2=\{(a,b)|a > b\}

R_3=\{(a,b)|a=b \text{ or } a=-b\}

R_4=\{(a,b)|a=b\}

R_5=\{(a,b)|a=b+1\}

R_6=\{(a,b)|a+b \le 3\}
```

- Symmetric: R_3 , R_4 , R_6 . R_3 is symmetric, if a=b (or a=-b), then b=a (b=-a), R_4 is symmetric as a=b implies b=a, R_6 is symmetric as $a+b\le 3$ implies $b+a\le 3$
- Antisymmetric: R_1 , R_2 , R_4 , R_5 . R_1 is antisymmetric as $a \le b$ and $b \le a$ imply a = b. R_2 is antisymmetric as it is impossible to have a > b and b > a, R_4 is antisymmetric as two elements are related w.r.t. R_4 if and only if they are equal. R_5 is antisymmetric as it is impossible to have a = b + 1 and b = a + 1

Transitive

- A relation R on a set A is called transitive if whenever (a,b)∈R and (b,c)∈R then (a,c)∈R for all a, b, c ∈ A
- Using quantifiers, we see that a relation R is transitive if we have

 $\forall a \forall b \forall c (((a,b) \in R \land (b,c) \in R) \rightarrow (a,c) \in R)$

Which one is transitive?

```
\begin{split} &R_1 \!\!=\!\! \{(1,1),\!(1,2),\!(2,1),\!(2,2),\!(3,4),\!(4,1),\!(4,4)\} \\ &R_2 \!\!=\!\! \{(1,1),\!(1,2),\!(2,1)\} \\ &R_3 \!\!=\!\! \{(1,1),\!(1,2),\!(1,4),\!(2,1),\!(2,2),\!(3,3),\!(4,1),\!(4,4)\} \\ &R_4 \!\!=\!\! \{(2,1),\!(3,1),\!(3,2),\!(4,1),\!(4,2),\!(4,3)\} \\ &R_5 \!\!=\!\! \{(1,1),\!(1,2),\!(1,3),\!(1,4),\!(2,2),\!(2,3),\!(2,4),\!(3,3),\!(3,4),\!(4,4)\} \\ &R_6 \!\!=\!\! \{(3,4)\} \end{split}
```

- R₄ R₅ R₆ are transitive
- R₁ is not transitive as (3,1) is not in R₁
- R₂ is not transitive as (2,2) is not in R₂
- R₃ is not transitive as (4,2) is not in R₃

Which are symmetric and antisymmetric

```
R_1 = \{(a,b) | a \le b\}

R_2 = \{(a,b) | a > b\}

R_3 = \{(a,b) | a = b \text{ or } a = -b\}

R_4 = \{(a,b) | a = b\}

R_5 = \{(a,b) | a = b + 1\}

R_6 = \{(a,b) | a + b \le 3\}
```

- R_1 is transitive as a \leq b and b \leq c implies a \leq c. R_2 is transitive
- R₃, R₄ are transitive
- R₅ is not transitive (e.g., (2,1), (1,0)). R₆ is not transitive (e.g. (2,1),(1,2))

Combining relations

- Relations from A to B are subsets of A×B, two relations can be combined in any way that two sets can be combined
- Let A= $\{1,2,3\}$ and B= $\{1,2,3,4\}$. The relations $R_1=\{(1,1),(2,2),(3,3)\}$ and $R_2=\{(1,1),(1,2),(1,3),(1,4)\}$ can be combined
- $R_1 \cup R_2 = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(3,3)\}$
- $R_1 \cap R_2 = \{(1,1)\}$
- $R_1 R_2 = \{(2,2),(3,3)\}$
- $R_2-R_1=\{(1,2),(1,3),(1,4)\}$

- Let $R_1 = \{(x,y) \mid x < y\}$ and $R_2 = \{(x,y) \mid x > y\}$. What are $R_1 \cup R_2, R_1 \cap R_2, R_1 R_2, R_2 R_1$, and $R_1 \oplus R_2$?
- Symmetric difference of A and B: denoted by A⊕B, is the set containing those elements in either A or B, but not in both A and B
- We note that (x,y)∈ R₁UR₂, if and only if (x,y)∈ R₁ or (x,y)∈ R₂, it follows that R₁UR₂={(x,y)|x≠y}
- Likewise, $R_1 \cap R_2 = \emptyset$, $R_1 R_2 = R_1$, $R_2 R_1 = R_2$, $R_1 \oplus R_2 = R_1 \cup R_2 R_1 \cap R_2 = \{(x,y) \mid x \neq y\}$

Composite of relations

- Let R be a relation from a set A to a set B, and S a relation from B to a set C.
- The composite of R and S is the relation consisting of ordered pairs (a,c) where a∈A, c∈C and for which there exists an element b∈B s.t. (a,b)∈R and (b,c)∈S.
 We denote the composite of R and S by S∘R
- Need to find the 2nd element of ordered pair in R the same as the 1st element of ordered pair in S

- What is the composite of the relations R and S, where R is the relation from {1,2,3} to {1,2,3,4} with R={(1,1),(1,4),(2,3),(3,1),(3,4)} and S is the relation from {1,2,3,4} to {0,1,2} with S={(1,0),(2,0),(3,1),(3,2),(4,1)}?
- Need to find the 2nd element in the ordered pair in R is the same as the 1st element of order pair in S
- $S \circ R = \{(1,0),(1,1),(2,1),(2,2),(3,0),(3,1)\}$

Power of relation

- Let R be a relation on the set A. The powers
 Rⁿ,n=1,2,3,..., are defined recursively by R¹=R,
 Rⁿ⁺¹=RⁿoR
- Example: Let R={(1,1),(2,1),(3,2),(4,3)}. Find the powers Rⁿ, n=2,3,4,...
- $R^2=R\circ R$, we find $R^2=\{(1,1),(2,1),(3,1),(4,2)\}$, $R^3=R^2\circ R$, $R^3=\{(1,1),(2,1),(3,1),(4,1)\}$, $R^4=\{(1,1),(2,1),(3,1),(4,1)\}$.
- It also follows Rⁿ=R³ for n=5,6,7,...

Transitive

- Theorem: The relation R on a set A is transitive if and only if Rⁿ⊆R
- Proof: We first prove the "if" part. Suppose
 Rⁿ⊆R for n=1,2,3,... In particular R²⊆R. To see
 this implies R is transitive, note that if (a,b)∈R,
 and (b,c)∈R, then by definition of composition
 (a,c)∈ R². Because R²⊆R, this means that
 (a,c)∈ R. Hence R is transitive

Transitive

- We will use mathematical induction to prove the "only if" part
- Note n=1, the theorem is trivially true
- Assume that Rⁿ⊆R, where n is a positive integer. This is the induction hypothesis. To complete the inductive step, we must show that this implies that Rⁿ⁺¹ is also a subset of R
- To show this, assume that $(a,b) \in R^{n+1}$. Because $R^{n+1} = R^n \circ R$, there is an element x with x A s.t. $(a,x) \in R$, and $(x,b) \in R^n$. The inductive hypothesis, i.e., $R^n \subseteq R$, implies that $(x,b) \in R$. As R is transitive, and $(a,x) \in R$, and $(x,b) \in R$, it follows that $(a,b) \in R$. This shows that $R^{n+1} \subseteq R$, completing the proof

9.3 Representing relations

- Can use ordered set, graph to represent sets
- Generally, matrices are better choice
- Suppose that R is a relation from A={a₁, a₂, ..., a_m} to B={b₁, b₂, ..., b_n}. The relation R can be represented by the matrix M_R=[m_{ij}] where m_{ij}=1 if (a_i,b_j) ∈R, m_{ij}=0 if (a_i,b_j) ∉R,
- A zero-one (binary) matrix

- Suppose that $A=\{1,2,3\}$ and $B=\{1,2\}$. Let R be the relation from A to B containing (a,b) if $a\in A$, $b\in B$, and a>b. What is the matrix representing R if $a_1=1$, $a_2=2$, and $a_3=3$, and $b_1=1$, and $b_2=2$
- As $R=\{(2,1), (3,1), (3,2)\}$, the matrix R is

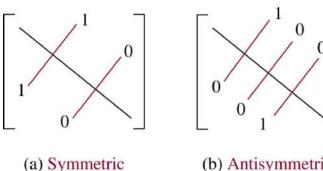
Matrix and relation properties

- The matrix of a relation on a set, which is a square matrix, can be used to determine whether the relation has certain properties
- Recall that a relation R on A is reflexive if (a,a)∈R.
 Thus R is reflexive if and only if (a_i,a_i)∈R for i=1,2,...,n
- Hence R is reflexive iff m_{ii}=1, for i=1,2,..., n.
- R is reflexive if all the elements on the main diagonal of M_R are 1
 The McGraw-Hill Companies, Inc. all rights reserved.

Symmetric

- The relation R is symmetric if (a,b)∈R implies that (b,a)∈R
- In terms of matrix, R is symmetric if and only $m_{ii}=1$ whenever $m_{ii}=1$, i.e., $M_R=(M_R)^T$
- R is symmetric iff M_R is a symmetric matrix

© The McGraw-Hill Companies, Inc. all rights reserved.

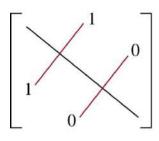


(b) Antisymmetric

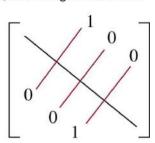
Antisymmetric

- The relation R is symmetric if (a,b)∈R and (b,a)∈R imply a=b
- The matrix of an antisymmetric relation has the property that if m_{ij}=1 with i≠j, then m_{ij}=0
- Either m_{ij}=0 or m_{ji}=0 when i≠j

© The McGraw-Hill Companies, Inc. all rights reserved.



(a) Symmetric



(b) Antisymmetric

 Suppose that the relation R on a set is represented by the matrix

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Is R reflexive, symmetric or antisymmetric?

• As all the diagonal elements are 1, R is reflexive. As M_R is symmetric, R is symmetric. It is also easy to see R is not antisymmetric

Union, intersection of relations

- Suppose R1 and R2 are relations on a set A represented by M_{R1} and M_{R2}
- The matrices representing the union and intersection of these relations are

$$M_{R1UR2} = M_{R1} V M_{R2}$$

$$M_{R1\cap R2} = M_{R1} \wedge M_{R2}$$

 Suppose that the relations R₁ and R₂ on a set A are represented by the matrices

$$\boldsymbol{M}_{R_1} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad \boldsymbol{M}_{R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

What are the matrices for $R_1 \cup R_2$ and $R_1 \cap R_2$?

$$M_{R_1 \cup R2} = M_{R_1} \lor M_{R2} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \qquad M_{R_1 \cap R2} = M_{R_1} \land M_{R2} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Composite of relations

- Suppose R is a relation from A to B and S is a relation from B to C. Suppose that A, B, and C have m, n, and p elements with M_S, M_R
- Use Boolean product of matrices
- Let the zero-one matrices for SoR, R, and S be $M_{S\circ R}=[t_{ij}]$, $M_R=[r_{ij}]$, and $M_S=[s_{ij}]$ (these matrices have sizes m×p, m×n, n×p)
- The ordered pair (a_i, c_j)∈S∘R iff there is an element b_k
 s.t.. (a_i, b_k)∈R and (b_k, c_i)∈S
- It follows that $t_{ij}=1$ iff $r_{ik}=s_{kj}=1$ for some k $M_{S\circ R}=M_R\odot M_S$

Boolean product (Section 3.8)

Boolean product A ⊙ B is defined as

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
Replace x with \land and + with \lor

$$A \cdot B = \begin{bmatrix} (1 \land 1) \lor (0 \land 0) & (1 \land 1) \lor (0 \land 1) & (1 \land 0) \lor (0 \land 1) \\ (0 \land 1) \lor (1 \land 0) & (0 \land 1) \lor (1 \land 1) & (0 \land 0) \lor (1 \land 1) \\ (1 \land 1) \lor (0 \land 0) & (1 \land 1) \lor (0 \land 1) & (1 \land 0) \lor (0 \land 1) \end{bmatrix}$$

$$= \begin{bmatrix} 1 \lor 0 & 1 \lor 0 & 0 \lor 0 \\ 0 \lor 0 & 0 \lor 1 & 0 \lor 1 \\ 1 \lor 0 & 1 \lor 0 & 0 \lor 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Boolean power (Section 3.8)

- Let A be a square zero-one matrix and let r be positive integer. The r-th Boolean power of A is the Boolean product of r factors of A, denoted by A^[r]
- $A^{[r]} = A \odot A \odot A ... \odot A$ r times

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

$$A^{[2]} = A \cdot A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$A^{[3]} = A^{[2]} \cdot A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}, A^{[4]} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}, A^{[5]} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Find the matrix representation of SoR

$$M_{R} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, M_{S} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
$$M_{S \cdot R} = M_{R} \cdot M_{S} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Powers Rⁿ

For powers of a relation

$$M_{R^n} = M_R^{[n]}$$

The matrix for R2 is

$$M_R = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

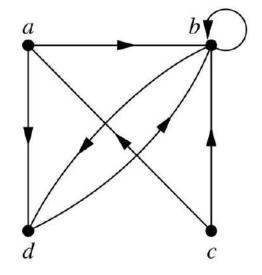
$$M_{R^2} = M_R^{[2]} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Representing relations using digraphs

- A directed graph, or digraph, consists of a set V of vertices (or nodes) together with a set E of ordered pairs of elements of V called edges (or arcs)
- The vertex a is called the initial vertex of the edge (a,b), and vertex b is called the terminal vertex of the edge
- An edge of the form (a,a) is called a loop

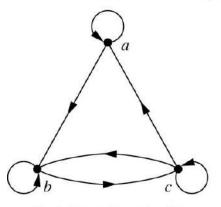
 The directed graph with vertices a, b, c, and d, and edges (a,b), (a,d), (b,b), (b,d), (c,a), (c,b), and (d,b) is shown

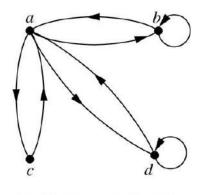
© The McGraw-Hill Companies, Inc. all rights reserved.

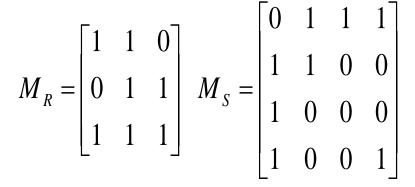


$$M_R = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

© The McGraw-Hill Companies, Inc. all rights reserved.







(a) Directed graph of R

(b) Directed graph of S

- R is reflexive. R is neither symmetric (e.g., (a,b)) nor antisymmetric (e.g., (b,c), (c,b)). R is not transitive (e.g., (a,b), (b,c))
- S is not reflexive. S is symmetric but not antisymmetric (e.g., (a,c), (c,a)). S is not transitive (e.g., (c,a), (a,b))